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Abstract. Abduction was first introduced in the epistemological context of scientific discovery. It
was more recently analyzed in artificial intelligence, especially with respect to diagnosis analysis
or ordinary reasoning. These two fields share a common view of abduction as a general process
of hypotheses formation. More precisely, abduction is conceived as a kind of reverse explanation
where a hypothesis H can be abduced from events E if H is a “good explanation” of E . The paper
surveys four known schemes for abduction that can be used in both fields. Its first contribution is a
taxonomy of these schemes according to a common semantic framework based on belief revision. Its
second contribution is to produce, for each non-trivial scheme, a representation theorem linking its
semantic framework to a set of postulates. Its third contribution is to present semantic and axiomatic
arguments in favor of one of these schemes, “ordered abduction,” which has never been vindicated in
the literature.
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1. Introduction26

Abduction was first defined in epistemology as a reasoning process leading to form27

an explanatory hypothesis from given observations, especially in physics. It operates28

from facts to facts, for instance, when Leverrier postulated the existence of Neptune29

from the discrepancy between the predicted and the observed trajectory of Uranus.30

It operates from facts to laws, for instance, when the law of discrete electromagnetic31

rays was derived from observations of different chemical elements. It operates from32

laws to theory, for instance, when Newton’s theory was conjectured from Kepler’s33

laws and the falling bodies law.34

More recently, instances of abduction were given in artificial intelligence (AI),35

especially in relation with diagnosis tasks or ordinary reasoning. The first are36
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illustrated by medical diagnosis when a physician guesses the illness which causes 37

some symptoms or by police inquiry when a police officer guesses a criminal 38

from observed clues. The second are found in natural interpretation when an agent 39

tries to reveal his opponent’s preferences (or beliefs) through his actions, or in 40

experimental psychology when people try to discover a recurrence rule able to 41

generate a given sequence of numbers. 42

The aim of the paper is to propose a general definition that suits all the typical 43

instances of abduction as hypotheses formation process, whether in science, in 44

diagnosis or in ordinary reasoning. A common feature of the analysis of abduction 45

is its link to the notion of explanation. Indeed, abduction is widely considered as 46

a kind of reverse explanation. But this feature is not enough to provide a satis- 47

factory definition of abduction since the formal definition of explanation is itself 48

controversial. Moreover, not all (reverse) explanations are acceptable for abduction, 49

but only the “best” or at least the “good” ones (as defined for example in Lipton, 50

1991). 51

The most standard way to define abduction is through classical deduction, 52

“classical abduction” from E to H being then defined as reverse classical deduc- 53

tion: H ⊆ E . Since such a definition can be shown to be unsatisfactory, a richer ap- 54

proach first consists in considering non-monotonic reasoning (Poole, 1988, 1989). 55

Another proposal consists in introducing a belief revision operation within the 56

antecedent and/or within the consequent of the inference scheme. Belief revision is 57

more and more widely accepted as a very powerful and convenient framework to 58

model reasoning. It has been linked with different types of inference, for instance, 59

with non-monotonic reasoning (Kraus et al., 1990) or with confirmation (Zwirn 60

and Zwirn, 1994), and, although more controversially, with conditional reasoning 61

(Stalnaker, 1968). 62

In a semantic belief revision framework, an agent’s initial belief K is revised 63

into a final belief K ∗ A when the agent receives some message A. Replacing H or 64

E by the respective beliefs K ∗ H or K ∗E leads naturally to three possible alter- 65

native schemes to reverse classical deduction. The paper relies on this combina- 66

tory heuristic to compare four abduction schemes (including classical abduction), 67

reciprocal of four explanation schemes. Each of these abduction schemes have been 68

independently presented by several AI authors. A recent and systematic analysis 69

of these proposals can be found in Pino-Perez and Uzcatégui (1999). Section 4.3 70

gives a more detailed analysis of previous works. 71

The paper compares the four abduction schemes along their common belief 72

revision semantic framework. It discards schemes that allow an agent to abduce 73

hypotheses he should normally not abduce or that prevent him from abducing 74

hypotheses that he could be willing to abduce. The paper proposes further a set 75

of postulates for the last three abduction schemes and proves (for the two original 76

schemes) the representation theorems which link the semantic framework to the set 77

of postulates. Hence, the abduction schemes can be compared through the postulates 78

which are in common and those which differ. The paper finally favors one scheme, 79
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“ordered abduction,” which has not been vindicated by previous authors. Arguments80

in favor of this scheme are both semantic and axiomatic and are illustrated by one81

example.82

The paper is organized as follows. The second section recalls the historical back-83

ground and introduces the formal framework used. The third section defines the four84

possible abduction schemes in relation with belief revision operations. The fourth85

section compares the relevance of these schemes through one example and through86

more theoretical considerations and considers the related works. The fifth section87

presents the sets of postulates and representation theorems for non-transitive, non-88

reflexive and ordered abduction. The sixth section compares these sets of postulates89

and discusses their respective advantages and defaults. A conclusion follows while90

proofs are given in appendix.91

2. Background and Framework92

2.1. ABDUCTION ALONG PEIRCE93

The concept of abduction has been far less studied by the philosophy of sci-94

ence than the concept of explanation. It was first defined by Charles Peirce95

(1931–1958), and later gained few logical improvements, including Rescher (1978)96

and Levi (1979). Peirce defines abduction in the following terms: “Abduction is the97

process of forming an explanatory hypothesis. It is the only logical operation which98

introduces any new idea.” He gave in fact two rather different definitions, a formal99

one introduced in the treatment of a syllogism and a constructive one stated in the100

process of belief formation. However, the common idea is to consider abduction101

as a reverse explanation, in that a proposition abduced from another one must be a102

good explanation for it.103

The first definition of abduction given by Peirce, abduction1, stands inside the104

predicate calculus framework. Consider a syllogism which relates a structural an-105

tecedent H (the rule) and a factual antecedent h (the case) to a factual consequent106

k (the result): H ∧ h → k. According to Peirce, there are three basic operations107

between these terms:108

– prediction links H and h to k,109

– abduction1 links H and k to h,110

– induction links couples (h, k) to H .111

This analysis is in accordance with the so called “deductive-nomological scheme,”112

on which Hempel (1965) and Popper (1959) relied for building their epistemological113

theories. Popper put stress on refutation, which links ¬k to ¬H or ¬h. Hempel114

proposed a theory of confirmation, a concept which encompasses both abduction1115

and induction. The last two concepts appear technically as reverse predictions,116

although induction selects inference to rules (in the context of a case) and abduction1117
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selects inference to cases (in the context of a rule). But contrary to deduction 118

which preserves the truth value of propositions, abduction (like induction) cannot 119

be logically justified and even falls apparently in the fallacy called “the affirmation 120

of the consequent.” Actually, as Peirce clearly states it, abduction is knowledge 121

ampliative. 122

Although precise, this first definition of abduction encounters two opposite lim- 123

its: 124

– Some abductions allowed by this definition are intuitively not admissible because 125

they lead to abnormal assumptions. For instance, if I see that my grass is wet, 126

I would generally not assume that a water bomber has poured the content of its 127

tank on it, though this abduction is allowed by abduction1. 128

– Some intuitively acceptable abductions are not allowed by this definition since 129

they rely on non-nomological relations between a fact and a possible assumption. 130

For instance, if I see that my grass is wet, though it is a natural assumption to 131

think that my sprinkler is on, I cannot abduce it through abduction1 since the 132

sprinkler may have a breakdown. 133

These limits are related to the fact that abduction1 is defined within a classical 134

framework, where the notions of “normality” and “exceptions” have no room. 135

The second definition of abduction given by Peirce, abduction2, is a more general 136

mode of inference which is defined in the dynamic context of scientific inquiry. A 137

scientist may learn a surprising fact, which troubles his mental state of “cognitive 138

calm” concerning a given class of phenomena. This surprising fact requires an 139

explanation validated in three reasoning steps: 140

– abduction2 corresponds to a first step where the scientist formulates some 141

explanatory hypotheses (laws or theories) which, if true, would restore his state 142

of “cognitive calm”; 143

– deduction corresponds to a second step where the scientist infers from the 144

preceding hypotheses some contrasted consequences able to be experimentally 145

tested; 146

– induction corresponds to a third step where the scientist experiments in order to 147

build degrees of confirmation of the hypotheses, leading eventually to favor one. 148

A possible reading of this theory is that abduction2 belongs to the context of 149

discovery, the context of justification being reserved to deduction and induc- 150

tion. This could imply that a logical analysis of abduction2 is impossible since 151

heuristics is not a purely logical process. Furthermore, even if logification is rele- 152

vant, abduction2 would not even be an inference because it does not lead to “con- 153

clusions” but to mere “candidates to belief.” However, according to most of the 154

Peirce’s analysts, a logic of abduction2 can be proposed since not every hypothesis is 155
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admissible as a good candidate for belief: even if not accepted, abduced hypotheses156

result from a selection of the explanations that can be “seriously considered” for157

further acceptance. This requires to suggest a logical criterion for this selection, a158

task that was not achievable by Peirce at his time.159

Actually, abduction2 is not incompatible with abduction1. It can rather be thought160

as a more general inference which associates abduction with two constraints:161

(i) abduced hypotheses must “explain” the facts under consideration, eventually162

in a given context;163

(ii) abduced hypotheses must be “good candidates to belief”.164

A motto which seems to encompass both constraints and is often endorsed165

by abduction theorists is that abduction is inference to the best explanation (see166

Harman, 1978; Thagard, 1978; Lipton, 1991 for a detailed analysis of this concept167

and van Fraassen, 1980, for a critical appraisal of its use in favor of scientific168

realism). However, the notion of “best” explanation is too demanding since169

abduction may select several candidates to belief. Hence, the guideline for a further170

analysis will be that abduction is simply inference to a good explanation. Usu-171

ally, an explanation scheme appears as a “forward inference” which involves a172

proposition A (for instance, a case) explaining a proposition B (for instance,173

a result), eventually in some context (for instance, a law). Conversely, an ab-174

duction scheme can be viewed as a “backward inference” from the explanan-175

dum B to the explanans A, a condition realized by both abduction1 and176

abduction2.177

2.2. BELIEF REVISION178

Two logical frameworks are usually considered. The syntactic framework is defined179

by a formal language L built by use of a finite set of propositions {a, b, c, . . . }180

closed under the connectives: ¬ (negation), ∧ (conjunction), ∨(disjunction) and181

→ (implication). Let T and ⊥ be the two constants truth and falsity. Let � be182

the symbol of the meta-level deduction operation. The semantic (set-theoretic)183

framework is defined on a (finite) set of possible worlds with the set operations: -184

(complementation), ∩ (intersection), ∪ (union) and ⊆ (inclusion). Let A, B, C , . . .185

be events, defined as subsets of worlds. Let W and Ø be respectively the full set186

and the empty set.187

The two frameworks are isomorphic in a propositional language with a finite188

number of propositional letters, with the following correspondences. First, to each189

proposition x is associated an event X , i.e. the set of worlds where the proposition190

is true. Second, the symbols: ¬, ∧, ∨, � correspond to the symbols -, ∩, ∪, ⊆.191

Since the latter framework is computationally more convenient, it will be favored192

for the exposition of abduction schemes as well as for the proof of representation193

theorems. However, the terms ‘propositions’ and ‘events’ will be used one for194
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the other. Adaptation to a propositional framework (needing just a rewriting) and 195

generalization to an infinite number of possible worlds or an infinite language is 196

left to further work. 197

Belief revision is a belief change operation ∗ which relates an initial agent’s 198

belief K and a message A (which may contradict the initial belief) to a final belief 199

K ∗ A. Beliefs K and K ∗ A are assumed to be subsets of W . Contrary to W , K 200

is assumed to evolve when the agent makes new observations or receives new 201

information from other agents. The basic postulate of belief revision is that the 202

message has an epistemic priority over the initial belief of an agent, due to more 203

direct observations or to more reliable sources. This postulate is shared by abductive 204

reasoning. 205

In the syntactic framework of propositional logic, it is usual to introduce 206

explicitly a background theory �. Such a theory considers some generic beliefs 207

endorsed by the agent. In the belief revision framework, such beliefs will be con- 208

sidered as embedded partially in W and partially in K . Beliefs inside � which are 209

fixed are directly incorporated as constraints in the set W . Beliefs inside � which 210

could change, are included in the agent’s belief K which contains generic beliefs 211

(i.e., laws) as well as specific ones (i.e., facts) and which is revised when something 212

changes. 213

Belief revision was duly axiomatized by Alchourron et al. (1985) according to 214

the following postulates:
215
216

A1. Consistency 217

If K �= Ø and A �= Ø then K ∗ A �= Ø
218

A2. Success 219

K ∗ A ⊆ A 220
A3. Conservation 221

If K ⊆ A then K ∗ A = K 222
A3′. Weak Conservation 223

K ∗T = K 224

A4. Sub-Expansion 225

(K ∗ A) ∩ B ⊆ K ∗(A ∩ B)
226

A4′. Inclusion 227

K ∩ A ⊆ K ∗ A 228
A5. Super-Expansion 229

If (K ∗ A) ∩ B �= Ø then K ∗(A ∩ B) ⊆ (K ∗ A) ∩ B
230

A5′. Preservation 231

If K ∩ A �= Ø then K ∗ A ⊆ K ∩ A
232

A45. Right Distributivity 233

K ∗(A ∪ B) = K ∗ A or K ∗ B or K ∗(A) ∪ K ∗(B)
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It is possible to prove that the following set of postulates are equivalent:234

– {A1, A2, A3, A4, A5}235

– {A1, A2, A3′, A4, A5}236

– {A1, A2, A4, A4′, A5, A5′}237

– {A1, A2, A3, A45}238

– {A1, A2, A3′, A45}239

Belief revision rules can be associated with the set of postulates by a representa-240

tion theorem (Alchourron et al., 1985). Consider a preference relation represented241

by a total preorder ≤K on W indexed on a subset K of W . It is decomposed as242

usually into <K (by w <K w′ iff w ≤K w′ and not w′ ≤K w) and = K (by w =K w′243

if w ≤K w′ and w′ ≤K w). These relations are assumed to fulfill two properties:244

(i) w′ ∈ K and w′′ ∈ K ⇒ w′ =K w′′,245

(ii) w′ ∈ K and w′′ /∈ K ⇒ w′ <K w′′.246

It defines a ranking of the worlds of W , which can be represented by a system of247

concentric “spheres” around K . These embedded spheres cut up coronas between248

two successive ones. The more distant coronas correspond to the subsets of less249

preferred worlds. The minimal worlds of an event A (called the ‘preferred’ or the250

‘normal’ part of A) are now defined by:251

MinK (A) = {w ∈ A : ∀ w′ ∈ A, w′ <K w is false}

The representation theorem states that the revised belief is the set of the minimal252
worlds belonging to the message (the “preferred” part of the message):253

K ∗ A = MinK (A)

It means that the final belief is the intersection between A and the sphere of the254
closest worlds to K which has a non-empty intersection with A (see Figure 1). Q1255

Figure 1.
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The preference relation ≤K , which is specific of one agent’s “epistemic state” 256

(Darwiche and Pearl, 1997), is a more complete description of the agent’s total belief 257

than K is and defines all what is needed to achieve his belief revision process. 258

2.3. NON-MONOTONIC REASONING 259

Non-monotonic inference weakens the usual operation of classical deduction in 260

order to reflect rules of common reasoning in the context of proof. These rules do 261

not preserve anymore the truth value of the propositions. More precisely, a non- 262

monotonic inference |∼ states that A|∼B means “if A, normally B” or “if A is con- 263

sidered as true, then B is accepted.” This kind of inference is non-monotonic since 264

adding a new premise A′ to A does not necessarily preserve the initial conclusion B. 265

Non-monotonic inference was duly axiomatized by Kraus et al. (1990), who 266

introduced a set of postulates corresponding to “preferential” non-monotonic 267

inference and Lehmann and Magidor (1992), who introduced a set of postulates 268

corresponding to “rational” non-monotonic inference, strictly stronger than the 269

first one. Only the second will be used in Section 5.1. The corresponding postulates 270

are the following: 271

272

C0. Left Logical Equivalence 273

If A ≡ B and A|∼ C then B|∼ C
274

C1. Right Weakening 275

If A ⊆ B and C |∼ A then C |∼ B
276

C2. Reflexivity 277

A|∼ A
278

C3. Right And 279

If A|∼ B and A|∼ C then A|∼ B ∩ C
280

C4. Left Or 281

If A|∼ C and B|∼ C then A ∪ B|∼ C
282

C5. Consistency Preservation 283

If A|∼ Ø then A ≡ Ø
284

C6. Cautious Monotony 285

If A|∼ B and A|∼ C then A ∩ B|∼ C
286

C7. Rational Monotony 287

If (not (A|∼ − B) and A|∼ C) then A ∩ B|∼ C 288

289

It is possible to prove that the following set of postulates are equivalent: 290

– {C0, C1, C2, C3, C4, C6, C7}, 291

– {C0, C1, C2, C3, C4, C5, C7}. 292
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A representation theorem was given (Lehmann and Magidor, 1992). The au-293

thors make a technical distinction between a set of “states,” designing possible294

states of affairs, and a set of “worlds,” designing the truth values assigned to propo-295

sitions. A given state may correspond to a subset of worlds. According to Makinson296

(1993), this distinction can be avoided by assuming that there exists a one-to-one297

correspondence between “states” and “worlds,” i.e. elements of W .298

Consider then a preference relation defined by a partial preorder ≤ on W , which299

admits the complementary relation < on W . The minimal worlds of an event A,300

denoted Min(A), are defined by:301

Min(A) = {w ∈ A : ∀w′ ∈ A, w′ < w is false}
Then a rational non monotonic inference A|∼B holds when, for every model302

satisfying the preference relation the consequent B is true in every minimal world303

satisfying A:304

A|∼B iff Min(A) ∈ B

Let us consider again the relation <K related to K (see Section 2.2) and define the305

non-monotonic inference relation by:306

A|∼K B iff MinK (A) ⊆ B, with MinK (A)

= {w ∈ A : ∀w′ ∈ A, w′ <K w is false}
The following correspondence rule between rational non-monotonic inference and307

belief revision has been proved (Gärdenfors and Makinson, 1991):308

A|∼K B iff K ∗ A ⊆ B

The initial belief K acts as a parameter for specifying partially the preference309

relation underlying the non-monotonic inference:310

K = ∩B : W |∼K B

3. Four Abduction Schemes311

3.1. ABDUCTION AS BELIEF REVISION312

Abduction has already been linked to non-monotonic reasoning and belief revision313

in different ways (see Section 4.3). The intuitive arguments for relating them are314

the following:315

– The abduction process requires some belief change operation to occur. Indeed,316

abduction relates an initial belief and a new observation to a final belief changed317

through the abduction process in order to include a new hypothesis.318
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– Abduction is, as belief revision, ampliative and non monotonic. First, as pre- 319

viously noticed, abduction leads to infer hypotheses that cannot be classically 320

deduced from the given facts. Second, when a hypothesis is a good explanation 321

of some facts, it does not mean that it is a good explanation of these facts jointly 322

to some other facts. 323

However, one cannot consider that belief revision or non-monotonic inference 324

are directly relevant theories of abductive reasoning. Such a “direct equivalence” 325

would state that a hypothesis H is abduced from facts E either iff K ∗E ⊆ H (belief 326

revision) or iff E |∼ H (non-monotonic inference). Such a thesis has to be rejected 327

for two reasons. First, this use of belief revision or of non-monotonic reasoning 328

introduces a direct inference from facts to hypotheses. However, as considered in 329

this paper, abduced hypotheses have to be an explanation of facts and need to entail 330

them in some way. Second, hypotheses implied by a belief revision operation or 331

resulting from a non-monotonic inference are “accepted” by the agent and integrated 332

in his final belief. However, as considered in this paper, abduced hypotheses are 333

only “serious candidates” for acceptation and their acceptance depends on further 334

tests between them. 335

In this paper, belief revision will be favored in order to formalize abduction. 336

Non-monotonic reasoning is only used indirectly since belief revision naturally 337

introduces some non-monotonicity. A good logical definition of abduction must 338

state which belief revision operations are adequately involved when selecting 339

hypotheses which are “seriously considered” without being necessarily accepted. 340

The problem considered is then to propose a complete taxonomy of the possible 341

relations between abduction and belief revision. 342

In the preceding semantic framework, the facts (propositions that are true) as 343

well as the hypotheses (propositions to be assumed) will be called events. When 344

deduction is considered, it will always be interpreted as classical deduction. As 345

concerns explanation, a hypothesis is said to be an “explanation” of a fact when at 346

least some subset of the fact is deductively implied by some subset of the hypothesis. 347

In order to deal with abduction, a generic operators is added: ‖→ . By definition, 348

E ‖→ H means that the hypothesis H is abduced from event E , or equivalently 349

that the event E is (well) explained by the hypothesis H . Some cases are trivial, 350

for instance, when E is deduced from K , but all definitions and postulates apply. 351

3.2. FORMAL DEFINITION OF THE ABDUCTION SCHEMES 352

In the following, the arrow (→) used generically for all forms of abduction 353

will be replaced by different signs for each specific abduction scheme in order 354

to relate easily the different schemes. All definitions of abduction schemes are 355

stated given a revision operation * and a background knowledge K . Four ab- 356

duction schemes are defined by using all possible combinations of the revision 357

operation acting (or not) on facts E and hypothesis H . Other possible schemes 358
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could be imagined by considering for instance the negation of propositions E359

and H . But the present paper will be focused only on the criteria involving one360

condition, which are the simplest ones, this choice being common to the other361

works concerning the link of abduction with belief revision in the literature (see362

Section 4.3).363

The basic scheme usually considered is classical abduction (reverse classical364

explanation) defined by the following condition (where ‖- should not be interpreted365

as semantic deduction):366

E‖= H iff H ⊆ E

(The label “classical” just refers to classical logic where no belief revision operation367

is involved.) This abduction scheme is the most straightforward conception of an368

inference to a good explanation.369

The second scheme defines non-transitive abduction (reverse non-transitive370

explanation) by the following condition:371

E‖∼ H iff K ∗ H ⊆ E

(The label “non-transitive” is favored over the label “non-monotonic” since372

other explanation and abduction schemes will be non-monotonic while this one is373

the only one to be non-transitive). This abduction scheme is logically weaker than374

the previous one. It states that abduction is not reverse deduction but rather reverse375

belief revision (hence reverse non-monotonic inference): one abduces a hypothesis376

from a fact if one would have added this fact to one’s belief after having revised377

initial belief by the hypothesis (or equivalently if one infers non-monotonically the378

fact from the hypothesis). That means that the “normal” part of the hypothesis H379

must imply the fact E .380

A third scheme defines non-reflexive abduction (reverse non-reflexive explana-381

tion), by the following condition (including for technical reasons that a contradiction382

cannot be abduced):383

E‖≺ H iff Ø �= H ⊆ K ∗ E

(This abduction scheme is called non-reflexive since it is the only one with that384

property.) It is logically stronger than classical abduction. It states that one abduces385

a hypothesis from a fact if it explains the revised fact deductively. That means that386

the hypothesis H must imply the “normal” part of the fact E .387

The last scheme defines ordered abduction (reverse ordered explanation) by the388

following condition:389

E‖≈ H iff Ø �= K ∗ H ⊆ K ∗ E

AUTHOR'S PROOFS



UNCORRECTED
PROOF

12 B. WALLISER ET AL.

(The term ordered has been chosen since the binary relation is now reflexive 390

and transitive and hence is a pre-order; it is the only abduction scheme to satisfy 391

these properties except for classical abduction). This abduction scheme is stronger 392

than non-transitive abduction, weaker than non-reflexive abduction, and cannot be 393

compared to classical abduction. It considers that antecedent and consequent are 394

both contextualized by prior belief and relies on the fact that the belief revised by 395

the hypothesis would logically imply the belief revised by the fact. That means 396

that the “normal” part of the hypothesis H must imply the “normal” part of the 397

fact E . 398

3.3. A SYNTHETIC TABLE 399

In Table I, the four abduction operations are located in the periphery. Moreover, the 400
relations of implication between them are denoted in the following way:Q2 401

Table I.
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– infra (supra)-classicality compares any abduction scheme to classical abduction:402

infra–classicality: if E‖→ H , then E‖→ H
supra–classicality: if E‖-H , then E‖→ H

– infra (supra)-ordinality compares any abduction scheme to ordered abduction:403

infra–ordinality: if E‖→ H , then E‖≈ H
supra–classicality: if E‖≈ H , then E‖→ H

4. Semantic Comparison of Abduction Schemes404

4.1. ONE EXAMPLE405

As a simple example, consider the fact that ‘the grass of my garden is wet’. Several406

abductions can be made, each abduction implying the weaker ones. A classical407

abduction could be that ‘a water bomber poured water on it’ (assuming that we can408

safely deduce that if it was the case, the grass will certainly be wet). An instance of409

non-transitive abduction (the normal part of the hypothesis H must imply the fact410

E) could be that ‘a sudden overflow of the near river happened’ because, however411

improbable it is, if such an overflow was to occur, it would normally flood my412

garden. Under non-reflexive abduction (the hypothesis H must imply the normal413

part of the fact E), one may infer that ‘it rained on my garden’ because it is an usual414

situation for wet grass to have received rain. An ordered abduction (the normal415

part of the hypothesis H must imply the normal part of the fact E) could allow the416

hypothesis that ‘the sprinkler is on’ because on one hand, if it is the case that if the417

sprinkler is on, normally the grass is wet, and on the other hand, it is often the case418

that the grass is wet because the sprinkler has been put on.419

Classical and non-reflexive abductions lead to infer hypotheses whose occur-420

rence seem to imply the fact that the grass is wet, while ordered and non-transitive421

abductions rely on hypotheses whose occurrence tolerates exceptions to that fact:422

the sprinkler could be broken and the overflow of the river could be too small to wet423

the grass. Classical and non-transitive abductions may be discarded since they al-424

low to infer quite implausible hypotheses. On the contrary, although non-reflexive425

abduction seems relevant, it would be too restrictive to allow the sprinkler426

hypothesis which allows to infer that the grass is wet only through a non-427

monotonic inference. Ordered abduction is the only scheme allowing both to428

abduce the rain hypothesis and the sprinkler hypothesis. Hence, it seems to be the429

more relevant scheme.430

431

Remark. This example makes clear the link of abduction to explanation. Con-432

sidering ordered abduction, from the fact that ‘the grass is wet’, one can abduce that433

‘it rained’ or that ‘the sprinkler is on’, because both hypotheses directly explain the434
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wet grass. However, from the fact that ‘the grass is wet and the sprinkler is out’, 435

one cannot abduce that it rained because this hypothesis does not explain the whole 436

fact since it does not explain that the sprinkler is out. This may seem to contradict 437

a possible intuition, since discarding the rival active sprinkler assumption should 438

reinforce the rain assumption. But this intuition, if one grants it, comes from a 439

confusion between the conjunction ‘the grass is wet and the sprinkler is out’ with 440

the fact ‘the grass is wet’ inside an initial belief including the fact that ‘the sprinkler 441

is out’. In the last case, it would be necessary first to revise from the fact that the 442

sprinkler is out and then to abduce from the fact that the grass is wet the hypothesis 443

that it rained. But this involves iterated change not considered here. 444

4.2. GENERAL DISCUSSION 445

Classical abduction is inadequate for two reasons. It is too weak because a fact can 446

be deduced from a lot of “strange” hypotheses since any subset of the antecedent is 447

an abduced consequent. But all sufficient conditions can not be considered as “good 448

explanations” of a derived fact. For instance, if I see something flying in the sky, I 449

can abduce—but in a strange way—that it is a flying saucer since a flying saucer 450

always flies. It is also too strict because a good explanation of a fact is not always 451

a hypothesis from which this fact can be logically derived. In a lot of situations, 452

no interesting deductive explanation (by sufficient conditions) may be available. 453

For instance, if I see something flying in the sky, I cannot abduce—contrary to 454

intuition—that this is a bird because if many birds fly, not all birds fly (penguins, 455

ostriches). 456

Non-transitive abduction takes into consideration the fact that deductive ex- 457

planations are not always available and that most good explanations are often 458

non-monotonic inferences that can be defeated by counterexamples. It addresses 459

correctly the second default of the classical abduction scheme, by accepting some 460

good candidates that classical abduction would have rejected. For instance, it allows 461

the abduction that some flying object in the sky could be a bird because normally a 462

bird flies. But, it does not address its first default: it is still too weak and would lead 463

to accept a lot of bad candidates for abduction. In particular, it does not discard the 464

abduction about the flying saucer. 465

Non-reflexive abduction and ordered abduction need a more precise discus- 466

sion. Both abductions (contrary to classical and non-transitive abductions) address 467

correctly the first default of classical abduction. They concentrate on the best ex- 468

planation of a fact by ruling out “abnormal” hypotheses. For instance, they discard 469

the abduction about the flying saucer. Technically, this is due to the fact that, when 470

receiving a new piece of information E , the initial belief K is revised according to 471

message E before proceeding to abduction. However, two arguments in favor of 472

non-reflexive abduction will be successively refuted. 473

The first argument states that non-reflexive abduction corresponds to a deductive 474

explanation contrary to ordered abduction (observe that the same argument can be 475
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stated for classical abduction with regard to non-transitive abduction). Consider a476

couple of events (H , E) such that K ∗ H ⊆ K ∗ E but H �⊂ K ∗ E . It is possible to477

abduce H by ordered abduction but not by non-reflexive abduction. Let us call H ′478

the hypothesis K ∗ H . It is possible to abduce H ′ by non-reflexive abduction (and479

of course by ordered abduction too). Now, why should an agent abduce H which480

is not as good as an explanation as H ′, since E is deductively implied by H ′? One481

could think that non-reflexive abduction which allows the agent to abduce H ′ and482

not H is a better type of abduction than ordered abduction which allows him to483

abduce also H . For instance, if I see a flying object in the sky, the hypothesis that it484

is a “flying bird” (a “non-penguin” bird) could be considered as a better abduction485

than the hypothesis that it is just a bird (which is not selected through non-reflexive486

abduction).487

However, this argument is theoretically but not practically acceptable and does488

not sustain non-reflexive abduction for the following reason (applying to classical489

abduction too). First, for a finite set of worlds (or a finite set of propositions), it490

seems possible to state explicitly all exceptions to any given rule. But such a way to491

deal with the problem quickly leads to a number of cases which prevents any real492

treatment for a human reasoning agent because of the combinatorial explosion that493

arises. More generally, the relevance of non-monotonicity for ordinary (and even494

scientific) reasoning has to be seriously taken into account. The starting point of495

non-monotonic logic is that the set of possible worlds handled by a reasoning agent496

is generally not refined enough to establish deductive relations between empirical497

events. The proposition “if A then B” is relative to a set of empirical conditions498

or “provisos” and the set of these provisos is generally intractable or even infinite499

(Hempel, 1988). For instance (Goodman, 1955), if you see a lighted match, you500

can explain it by the fact that somebody scratched it, but it is not enough because501

you have also to assume that the match was not wet, that there was no wind and502

so on. Hence, ordinary reasoning is better represented by propositions such as503

“if A then normally B”. The set of possible worlds considered by the modeler to504

give a semantic interpretation to this kind of propositions (in terms of “minimal505

worlds”) is necessary finer than the set of possible worlds considered by the agent.506

Hence, when considering abduction, it is a philosophical fallacy to recommend507

that the agent should use this finer set of worlds to perform his reasoning task.508

The proposition H ′ = K ∗ H will generally not be expressible in the vocabulary509

used by the agent (or even the modeler) who is constrained to use H (the general510

hypothesis alone).511

512

Remark. The standard “bird” example (like all examples in “small worlds”) is513

a bit misleading because it is too simple. Speaking of “flying birds” treats H ′ as514

the conjunction of H and E . It is true that if a hypothesis H is a non-monotonic515

explanation of E : H |∼ E (or equivalently K ∗ H ⊆ E), then the conjunction516

of E and H will be a deductive explanation of E (this is even true for any hy-517

pothesis H compatible with E). But it is not in the spirit of abduction to abduce518
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from E the conjunction of E and of another hypothesis H . In the scientific work 519

as well as in the usual life, due to the limitations of language, it is generally im- 520

possible to express a hypothesis which actually entails the observed event from 521

a purely deductive point of view. By requiring that the hypothesis should deduc- 522

tively imply the normal cases of the fact, non-reflexive abduction prevents from 523

considering non-monotonic relations between an explanans and an explanandum, 524

and it can often be impossible to find an interesting hypothesis which satisfies this 525

requirement. 526

The second argument states that non-reflexive abduction is not reflexive contrary 527

to ordered abduction. Reflexivity, which means that is always possible to abduce 528

a fact from itself, is not an intuitively desirable feature since one does not gain 529

anything from a so poor abduction. 530

But this argument points only toward an overall limit of the present framework, 531

common to most qualitative frameworks: it does not allow to compare the degrees 532

of “explanatory power” of different hypothesis. One cannot argue that non-reflexive 533

abduction is the proper answer to formalize this notion, since if E = K ∗ E (the 534

normal part of E includes all worlds in E) then non-reflexive abduction allows also 535

to abduce E from itself. 536

Ordered abduction will then be favored as the only realistic type of abduction 537

for ordinary or scientific reasoning. It validates the idea that an explanation may 538

be a non-monotonic relation between hypotheses and facts, but conversely accepts 539

the restriction that good explanations of an event are those which validate only 540

its normal ways to be true, i.e. its preferred interpretations. It simultaneously al- 541

lows the “bird” hypothesis and rules out the flying saucer. This seems to a be a 542

good compromise between the two defaults of classical abduction. An interesting 543

consequence of this conclusion is that abduction cannot be simply defined by the 544

inversion of a consequence relation which would describe “good explanations”: 545

neither deduction nor non-monotonic inference are adequate definitions of good 546

explanations. 547

Nevertheless, it is possible to lessen the gap between ordered and non-reflexive 548

abduction if one accepts to consider that, in a typical abduction situation, an agent 549

would only hesitate between a fixed set of exclusive abducible hypotheses. These 550

exclusive hypotheses are for instance the set of possible answers to one question 551

(Levi, 1979), the possible diseases of a patient or the possible murderers for a 552

crime (like in the game of Cluedo). Hence, the agent does not consider all possible 553

subsets of the set of possible worlds W but the cells of a partition of W , belonging to 554

W ′ ⊂ 2W . From the agent’s point of view, the reasoning task is performed within W ′, 555

and the result of an abduction is always a single cell. In that case, the definitions 556

of ordered and of non-reflexive abductions collapse since K ∗ H = H for any 557

hypothesis H . Such a situation is in accordance with the previous remark: the set 558

of possible hypotheses within which the abductive task is de facto performed is 559

not refined enough to allow the agent to proceed to deductive explanations of an 560

empirical phenomenon. 561
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In other respects, abduction is a dynamic process in the spirit of the Peircean562

theory of abduction2 and may lead to more and more precise abduced hypotheses,563

converging eventually towards a deductive explanation. When receiving more and564

more information about various cases, the agent may revise the preorder between565

worlds by distinguishing worlds which were initially in a same corona. In the566

limit, each world can be singularized. In this case, the definition of ordered and567

non-reflexive abductions collapse again since H is a singleton. Such an asymptotic568

situation is again in accordance with the preceding remark: if the set of possible569

worlds is refined enough, ordered abduction may converge asymptotically towards570

non-reflexive abduction.571

4.3. RELATED WORKS572

This section considers the works which are directly related to the present paper,573

i.e. the formulation of purely logical definitions of abduction in relation with belief574

revision. It does not consider other works, dealing for instance with direct relation575

between abduction and non-monotonic reasoning (Poole, 1988, 1989).576

Classical abduction can be associated with the axiomatic system proposed by577

Flach (1996) under the name of “explanatory induction,” as shown by Pino-Pérez578

and Uzcátegui (1999, Section 5).579

Non-transitive abduction is proposed by Boutilier and Becher (1995) under the580

name of “predictive explanation.” It is introduced by Pino-Pérez and Uzcátegui581

(1999) under the label “epistemic explanation” in relation with belief revision.582

Non-reflexive abduction gives a belief revision semantics to the criterion583

proposed by Cialdea Mayer and Pirri (1996). It is introduced by Pino-Pérez584

and Uzcátegui (1999) under the label “causal explanation” in relation with585

non-monotonic inference. The heuristic they adopt consists in relating abduction586

to non-monotonic reasoning in the same spirit that we relate abduction to belief587

revision. More precisely, they associate to abduction, denoted E�H , an inference588

relation, denoted E |∼ab F , by the following relation:589

E |∼ab F if (if E � H then H ⊆ F)

They impose to |∼ab to satisfy several postulates of the non-monotonic inference of590

Kraus, Lehmann & Magidor (1990) and they look for the corresponding postulates591

for �. They define stronger and stronger set of postulates with more postulates till592

reaching causal explanation with all postulates. The last is shown to satisfy:593

E � H iff (if E |∼ab F then H ⊆ F)

It is easy to see that it corresponds precisely to non-reflexive abduction.594

Ordered abduction is also considered by Pino-Pérez and Uzcátegui (1999) under595

the label “strong epistemic explanation” in relation with belief revision. In fact, they596
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discard it in favor of non-reflexive abduction by using two types of arguments. First, 597

they notice that in some cases, ordered explanations “are not even explanations,” 598

in the sense that the observation E may not follow deductively from the abduced 599

hypothesis H . However, the present paper vindicates the idea that good explanations 600

are not necessarily deductive and even, that they are generally not. Second, they 601

follow their own heuristic described before. But they do not give strong arguments 602

in its favor. In fact, the same heuristic leads to ordered abduction if the inference 603

relation |∼ab is defined by: 604

E |∼ab F if (if E�H then H |∼F)

while |∼ satisfies the KLM postulates. The reverse relation is then: 605

E � H iff (if E |∼ab F then H |∼ab F)

5. Postulates and Representation Theorems 606

5.1. NON-TRANSITIVE ABDUCTION 607

Since non-transitive abduction has been shown to be equivalent to reverse 608

rational non-monotonic inference, it is enough to reverse the postulates of rational 609

non-monotonic inference. Consistency preservation is not considered since noth- 610

ing can be abduced from the empty set. The remaining postulates are the following: 611

612

B1. Reflexivity 613

If H �= Ø then H ‖∼ H 614

B5. Right Or 615

If (E ‖∼ H ) ∧ (E‖∼ G) then E ‖∼ G ∪ H 616

B9. Left And 617

If (E ‖∼ H ) ∧ (F‖∼ H ) then E ∩ F ‖∼ H 618

B10. Left Weakening 619

If (E ‖∼ H ) ∧ (E ⊆ F) then F ‖∼ H 620

B11. Rational Right Strengthening 621

If (E ‖∼ H ) ∧ not (−F ‖∼ H ) then E ‖∼ F ∩ H 622

623

B1 means that every non-contradictory hypothesis is abduced from itself. B5 624

states that the disjunction of two hypotheses abduced from an event is also abduced 625

from this event while B9 states that one hypothesis abduced from two events is 626

abduced from the conjunction of these events. B10 asserts that if a hypothesis is 627

abduced from an event which implies another one, it is also abduced from the last 628

one. Finally, B11 asserts that if from an event one abduces a hypothesis which is 629
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not abduced from the negation of another event, the conjunction of the hypothesis630

and of the second even can be abduced from the first event.631

No original representation theorem is needed.632

5.2. NON-REFLEXIVE ABDUCTION633

The proposed postulates are the following:634
635

B0. Non-Contradiction636

If E ‖≺ H then H �= Ø637

B1′. Pointwise Reflexivity638

w ‖≺ w639

B2. Strong Left Or640

If (E ‖≺ F) ∧ (G ‖≺ H ) then (E ∪ G) ‖≺ F ∨ (E ∪ G) ‖≺ H641

B3. Infra Classicality642

If E ‖≺ H then H ⊆ E643

B4. Right Strengthening644

If (E ‖≺ H ) ∧ (G ⊆ H ) then E ‖≺ G645

B5. Right Or646

If (E ‖≺ H ) ∧ (E ‖≺ G) then E ‖≺ G ∪ H647

B6. Weak Monotony648

If (E ‖≺ H ) ∧ (H ⊆ F) then E ∩ F ‖≺ H649

B7. Weak Cut650

If (E ‖≺ G) ∧ (G ⊆ F) ∧ ((E ∩ F) ‖≺ H ) then E ‖≺ H651
652

B0 says that a contradiction can never be abduced and B1′ states that every world653

is always self abduced. B2 says that if two hypotheses are respectively abduced654

from two events, then one of them at least is abduced from the disjunction of the655

events. B3 means that one abduces only a hypothesis from which the event can656

be classically deduced. Concerning the conclusion side, B4 says that it is always657

possible to strengthen an abduced hypothesis and B5 that it is always possible to658

abduce the disjunction of two abduced hypotheses. Concerning the premise side,659

B6 means that it is always possible to add to the premises of an abduction any660

consequence of the hypothesis while B7, in the opposite, means that it is always661

possible to cut among the premises of an abduction on the condition that one of the662

premises or an antecedent of it can be abduced from another premise.663

The corresponding representation theorem states:664

THEOREM 5.1. Let * be a revision function satisfying AGM set of pos-665

tulates A = {A1, A2, A3, A4, A5}, then an inference relation ‖≺ defined666
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according to (E ‖≺ H ) ≡ (Ø �= H ⊆ K ∗ E) respects the set of postulates 667

BNR = {B0, B1′, B2, B3, B4, B5, B6, B7} and therefore it is a non-reflexive ab- 668

ductive inference relation. 669

Conversely, let ‖≺ be a non-reflexive inference relation satisfying the set of 670

postulates BNR = {B0, B1′, B2, B3, B4, B5, B6, B7}. Then the operation * de- 671

fined by K ∗ E = ∪H: E ‖≺ H (union of all events abducted from E) where 672

K = K ∗ T , respects the set of postulates A = {A1, A2, A3, A4, A5} and there- 673

fore it is a revision function. Moreover, (E ‖≺ H ) ≡ (Ø �= H ⊆ K ∗ E) and 674

K ∗ E = {w: E ‖≺ w}. 675

The proof is given in Appendix A. 676
677

Remark. Notice that in this case, K ∗ E can be seen as the set of all events 678

abduced from E . 679

5.3. ORDERED ABDUCTION 680

The proposed postulates are the following: 681
682

B1. Reflexivity 683

If H �= Ø then H ‖≈ H 684

B3′. Weak Infra Classicality 685

If E ‖≈ H then E ∩ H �= Ø 686

B4′. Weak Right Strengthening 687

If (E ‖≈ H ) ∧ (Ø �= G ⊆ H ) then (E ‖≈ G) ∨ (E∩(−G)) ‖≈ E) 688

B5. Right Or 689

If (E ‖≈ H ) ∧ (E ‖≈ G) then E ‖≈ G ∪ H 690

B6. Weak Monotony 691

If (E ‖≈ H )∧ (H ⊆ F) then E ∩ F ‖≈ H 692

B8. Transitivity 693

If (E ‖≈ F) ∧ (F ‖≈ G) then E ‖≈ G 694

B9. Left And 695

If (E ‖≈ H ) ∧ (F ‖≈ H ) then (E ∩ F) ‖≈ H 696
697

B1 is a strengthening of B0, every hypothesis being here self abduced. B3′ 698

restricts infra classicality to the fact that abduced hypotheses are at least not 699

contradictory with the event considered. B4′ weakens B4 and states that either 700

it is possible to strengthen an abduced hypothesis from a given premise, or that 701

premise can be abduced from the conjunction of itself and the negation of the 702

strengthened hypothesis. B5 and B6 are as before. B8 states a classical transitivity 703

property. Finally, B9 says that abduction is preserved by the conjunction of premises 704

from which the same hypothesis can be abduced. 705
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The corresponding representation theorem is given below:706 Q3

THEOREM 5.2. Let * be a revision function satisfying AGM set of postulates707

A = {A1, A2, A3, A4, A5}, then an inference relation ‖≈ defined according to708

(E‖≈ H ) ≡ (Ø �= K ∗ H ⊆ K ∗ E) respects the set of postulates BoR = {B1, B3′,709

B4′, B5, B6, B8, B9} and therefore it is an ordered abductive inference relation.710

Conversely, let‖≈be an ordered inference relation satisfying the set of postulates711

BoR = {B1, B3′, B4′, B5, B6, B8, B9}. Then the operation * defined by K ∗ E =712

∩H : H‖≈ E (intersection of all events from which E can be abduced) and where713

K = K ∗T, respects the set of postulates A = {A1, A2, A3, A4, A5}, and therefore714

it is a revision function. Moreover, (E ‖≈ H ) ≡ (Ø �= K ∗ H ⊆ K ∗ E) and715

K ∗ E = {w : E‖≈ w}.716

The proof is given in Appendix B.717
718

Remark. notice that in this case, K ∗ E can be seen as the common part of all719
events from which E can be abduced.720

6. Syntactic Comparison of Abduction Schemes721

6.1. SUMMARY OF POSTULATES722

Table II shows the logical links between the three sets of postulates, discarding723
classical abduction. The postulates entering in their definition are presented in bold724
characters. The derivation of other postulates is proved in the Appendix. Q4725

Table II.

Non-reflexive Ordered abduction Non-transitive
abduction abduction

B0: Non-contradiction Yes Yes Yes

B1′: Pointwise Reflexivity Yes Yes Yes

B3′: Weak Infra Classicality Yes Yes Yes

B4′: Weak Right Strengthening Yes Yes Yes

B5: Right Or Yes Yes Yes

B6: Weak Monotony Yes Yes Yes

B7: Weak Cut Yes Yes Yes

B9: Left And Yes Yes Yes

B1: Reflexivity No Yes Yes

B3: Infra Classicality Yes No No

B4: Right Strengthening Yes No No

B8: Transitivity Yes Yes No

B10: Left Weakening No No Yes

B11: Rational Right Strengthening No No Yes
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Remark. Ordered abduction is logically weaker than non-reflexive abduction. 726

However, the postulates of the former are not all weakened with respect to the latter 727

(B1′ becomes stronger while B3 and B4 become weaker). One may wonder how this 728

is possible. In fact, what matters is whether the transformation of postulates implies 729

an increase or a decrease of the number of couples (E , H ) such that E ‖→ H . A 730

postulate transformation is said to be ampliative (resp. restrictive) if it implies more 731

(resp. less) couples. Any postulate states that “if antecedent then consequent” where 732

antecedent and consequent contain one formula of type E ‖→ H . It is easy to show 733

the following: 734

– if consequent alone is weakened (resp. strengthened), the corresponding postulate 735

is weakened (resp. strengthened) and ampliative (resp. restrictive); 736

– if antecedent alone is weakened (resp. strengthened), the corresponding postulate 737

is strengthened (resp. weakened) and ampliative (resp. restrictive). 738

It can be checked that B1′ is submitted to a weakening of the antecedent, while 739

B3 and B4 are submitted to a weakening of the consequent, hence all three are 740

ampliative as it should be. 741

6.2. COMPARISON OF POSTULATES 742

A first group of eight postulates are common to all abduction schemes. 743

A second group of three postulates differentiates non-reflexive and ordered 744

abduction (and is common to ordered abduction and to non-transitive abduction). 745

Reflexivity cannot be considered as a wishful postulate since nothing is gained if 746

one abduces the fact that one wants to explain; however, it can be considered as 747

some degenerated case which is not really harmful. Infra classicality and Right 748

Strengthening correspond to an ideal deductive explanation scheme but are too 749

demanding for common reasoning since they rule out most of the relevant 750

abductions performed. A good illustration against Right Strengthening is given by 751

Cialdea Mayer and Pirri (1996): the fact that some spoon of sugar has been added 752

in my coffee is a good explanation of the fact that my coffee is sweet enough; 753

but the fact that some spoon of sugar and some spoon of salt have been added 754

is no more a good explanation of that sweetness. Both postulates are responsi- 755

ble for rejecting relevant hypotheses. Hence, their rejection is in favor of ordered 756

abduction. 757

A third group of three postulates differentiates ordered and non-transitive 758

abduction (and is common to non-reflexive and ordered abduction). Transitivity 759

is an aimed property if one wants to proceed to abduction at higher and higher 760

levels. Left Weakening and Rational Right Strengthening imply to abduce a lot of 761

hypotheses which are not sufficiently sorted out. They are responsible for accepting 762

abnormal hypotheses. Hence, their rejection is again in favor of ordered abduction. 763
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Non-transitive abduction does not capture the intuitive properties of abduction764

very well. Non-reflexive abduction is generally unreachable for the reasons already765

detailed, but appears as a sort of ultimate aim. It can in fact be seen as a limit case of766

ordered abduction (as classical abduction is a limit case of non-reflexive abduction).767

Ordered abduction appears to obey to the best combination of postulates. In fact,768

the only remaining objection to ordered abduction is that it satisfies Reflexivity.769

This objection is not an argument for the other abduction schemes. It rather points770

out one limitation of the framework of belief revision: the notion of explanatory771

power is not embedded in the underlying preference relation on the set of possible772

worlds.773

7. Conclusion774

Two abduction schemes, non-reflexive and ordered abduction, were considered as775

serious candidates for representing the intuitive meaning of abduction. Ordered776

abduction was finally considered as the best definition of abduction. Non-reflexive777

abduction is considered as a sort of limit case which cannot be really reached due778

to the impossibility of clarifying all the provisos needed to reach a real classical779

deductive inference.780

The paper is mainly oriented towards an epistemological and theoretical goal.781

It tries to make a link between abductive reasoning and other logical develop-782

ments such as belief revision and non-monotonic inference. As such, further works783

could make the analysis deeper by extending the preceding definitions as well784

as the postulates. First, an infinite number of possible worlds would allow the785

modeler to deal with a larger set of propositions. Second, predicate logic instead786

of propositional logic would allow to deal with universal propositions, making787

easier the distinction between laws and facts. Third, the problem of the syn-788

tactical shape of abduction would also have to be considered. Lastly, probabil-789

ity calculus would favor the definition of the acceptability of a hypothesis and790

allow to build a bridge with diagnosis analysis often treated in a probabilistic791

framework.792

Another direction of research would be to apply the ideas of the paper towards a793

more procedural and computational goal. This is precisely what abductive logical794

programming (ALP) intends to do. However, this very active field of research is not795

exempt of a more fundamental questioning. Quoting Denecker and Kakas (2001),796

“the definition of an abductive solution defines the formal correctness criterion for797

abductive reasoning, but does not address the question of how the ALP formalism798

should be interpreted.[. . .] For example, how is negation in ALP to be understood799

? [. . .] Another open question is the relationship to classical logic.” Hence, the two800

approaches should be thought as complementary appraisals of abductive reasoning801

but their precise links remain to be studied.802
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Appendix A: Representation Theorem for Non-Reflexive Abduction 803

DERIVED PROPOSITIONS 804

B0′. If no hypothesis can be abduced from an event, then this event is empty. 805

It comes by recurrence from B1′ and B2. 806

(It is not a formal proposition hence cannot be incorporated in the set of 807

postulates as one may wish in order to spare postulates B1′ and B2). 808

809

B1′′. Weak Reflexivity: If ((E ‖≺ H ) then (H ‖≺ H ) 810

B6 with F = H gives (E ∩ H ) ‖≺ H . By B3, if E ‖≺ H then H ⊆ E , hence 811

(E ∩ H ) = H . 812

B8. Transitivity: If [(E ‖≺ F) ∧ (F ‖≺ G)] then (E ‖≺ G) 813

By B3 and B4. 814

B9. Left And: If [(E ‖≺ H ) ∧ (F ‖≺ H )] then (E ∩ F ‖≺ H ) 815

From B3 and B6. 816

B46. Pointwise Left Strengthening: If [(E ‖≺ H ) ∧ ¬ (E‖≺ w)] then (E ∩ 817

(−w)‖≺H ) 818

If [(E ‖≺ H ) ∧ ¬ (E ‖≺ w)] then ¬(w ⊆ H ); otherwise, by B4 [(E‖≺H )∧ (w 819

⊆ H )] would give (E‖≺ w). Hence, [(E ‖≺ H ) ∧ H ⊆ (−w)] and then (E∩(−w) 820

‖≺ H ) from B6. 821

B6′. If [(E ‖≺ H ) ∧ (E ‖≺ F) ∧ (F ⊆ H )] then (H ‖≺ F) 822

By B6: (E ∩ H ) ‖≺ F . By B3 (H ⊆ E) hence (E ∩ H ) = H . 823

B26. If [E ‖≺ H ) ∧ (G ⊆ E)] then (H ∪ G) ‖≺ H 824

From B1′′ H ‖≺ H hence by B2 E ∪H‖≺ H . Now [(E ∪H ‖≺ H ) ∧ (H ⊆ H ∪G)] 825

and B6 give [(E ∪ H ) ∩ (H ∪ G)] ‖≺ H . And (E ∪ H )∩ (H ∪ G) = H ∪ G if 826

(G ⊆ E). 827

B3′′ If E‖≺ H then E ‖≺ E ∩ H 828

Trivial because from B3 E ∩ H = H . 829

B12. Weak Supra Classicality: If E ‖≺ E ∧ E | − H , then (E ‖≺H ) 830

REPRESENTATION THEOREM 831

THEOREM A.1. Let * be a revision function satisfying AGM set of postu- 832

lates A = {A1, A2, A3, A4, A5}, then an inference relation ‖≺ defined ac- 833

cording to (E‖≺H ) ≡ [(Ø �= H ⊆ K ∗ E)] respects the set of postulates 834

BNR = {B0, B1′, B2, B3, B4, B5, B6, B7} and therefore is a non-reflexive ab- 835

ductive inference relation. 836
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Proof. (We will use equally E ‖≺ H or H ⊆ K ∗ E with Ø �= H ).837
838

B0: trivial by definition.839

B1′: Trivial because for every world w, K |w = w840

B2: Let E‖≺ F and G ‖≺ H , i.e. F ⊆ K ∗ E and H ⊆ K ∗ G. From A45:841

K ∗ (E ∪ G) = K ∗ E or K ∗ G or (K ∗ E ∪ K ∗ G). Hence, F ⊆ K ∗ (E ∪ G)842

or H ⊆ K ∗ (E ∪ G) hence E ∪ G ‖≺ F or E ∪ G ‖≺ H .843

B3: If H ⊆ K ∗ E then H ⊆ E because K ∗ E ⊆ E by A2.844

B4: Trivial.845

B5: If E ‖≺ H and E ‖≺ G then H ⊆ K ∗E and G ⊆ K ∗E . Then G∪H ⊆ K ∗E846

hence E ‖≺G ∪ H .847

B6: Assume Ø �= H ⊆ K ∗ E and H ⊆ F . Then H ⊆ K ∗ E ∩ F . By A4:848

K ∗ E ∩ F ⊆ K (∗E ∩ F). Hence H ⊆ K ∗ (E ∩ F).849

B7: Assume G ⊆ K ∗ E, G ⊆ F , H ⊆ K ∗ (E ∩ F). By A5, K ∗ (E ∩ F) ⊆ K∗850

E ∩ F . Hence, H ⊆ K ∗ E .851

THEOREM A.2. Let ‖≺ be a non-reflexive inference relation satisfying the set of852

postulates BNR = {B0, B1′, B2, B3, B4, B5, B6, B7}. Then the operation * defined853

by K ∗ E = ∪ H, E‖≺H (union of all events abduced from E) where we set854

K = K ∗T, respects the set of postulates A = {A1, A2, A3, A4, A5} and therefore855

it is a revision function. Moreover, (E‖≺H ) ≡ [(Ø �= H ⊆ K ∗ E)] and K ∗ E =856

{w : E‖≺ w}.857

Proof.858

(a) We show first that (E‖≺H ) ≡ [(Ø �= H ⊆ K ∗ E)].859

If sense: If Ø �= H ⊆ K ∗ E then E‖≺H .860

Let Abd(E) be the set of events abduced from E . By B5, Abd(E) is closed861

under union (W is finite). By B4, Abd(E) is closed under the sub-set operation.862

Let Ø �= H ⊆ K ∗ E . There exists a family {Fi} of elements from Abd(E) such863

as H ⊆ ∪Fi . Now ∪Fi ∈Abd(E) and since Abd(E) is closed under sub-set864

operation H ∈ Abd(E) hence E‖≺H .865

Only if sense: If E‖≺H then Ø �= H ⊆ K ∗ E .866

Trivial from the definition of K ∗ E and B0.867

(b) Let us show now that K ∗ E = {w, E‖≺w}.868

Let w be abduced from E . Then {w} ⊆ K ∗ E hence w ∈ K ∗ E . Vice versa,869

let w ∈ K ∗ E , hence there exist H such as E‖≺ H and {w} ⊆ H hence by870

B4 E‖≺ {w}.871

(c) We can now prove that * is a belief revision function satisfying the postulates872

A1–A5.873
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A1: Assume E �= Ø. If E is a single world then E ‖≺ E and K ∗ E = E �= Ø. If 874

E contains more than a world, let E = ∪wi , i ∈ I with I = {1, 2, . . . .}. Now, 875

wi ‖≺ wi for every i by B1′. 876

Then w1∪w2‖≺w1 or w1∪w2‖≺w2 by B2. Assume now that ∪wi‖≺wα for 877

i , α ∈ I ′ ⊂ I . Let j ∈ I –I ′. B2 gives: (∪wi ) ∪ w j‖≺wα or (∪wi ) ∪ w j‖≺w j . 878

By recurrence, there exists some β ∈ I such that E‖≺wβhence K ∗ E �= Ø. 879

Moreover, this proves that in every case K �= Ø because K = K ∗ T and 880

T �= Ø. 881

A2: Trivial by B3. 882

A3: Assume K ⊆ E then K ∗ T ⊆ E . Le us show that K ∗ E = K = K ∗ T . 883

(a) Let H ⊆ K ∗T then T ‖≺H and H ⊆ E . By B6, E‖≺H then H ⊆ K ∗ E . 884

Then K ∗ T ⊆ K ∗ E . 885

(b) Let H ⊆ K ∗ E . By A1, it exists F �= Ø such as T ‖≺F . Then from 886

(a) F ⊆ E . Then T ‖≺F and F ⊆ E and E‖≺H . By B7, T ‖≺H hence 887

H ⊆ K ∗ T . Then K ∗ E ⊆ K ∗ T . 888

(Remark. This proof is unnecessary if we adopt the equivalent set of postulates 889

{A1, A2, A4, A5, K ∗ T = K} for revision.) 890

A4: Let H ⊆ (K ∗ E) ∩ F . Then E‖≺H and H ⊆ F . Then by B6, E ∩ F‖≺H 891

hence H ⊆ K ∗ (E ∩ F). 892

A5: Assume (K ∗ E) ∩ F �= Ø. Then it exists G such as E‖≺G and G ⊆ F . By 893

A1, K ∗ (E ∩ F) �= Ø because (E ∩ F) �= Ø since (K ∗ E) ∩ F �= Ø and 894

K ∗ E ⊆ E . So let H ⊆ K ∗ (E ∩ F) i.e. E ∩ F‖≺H . By B7, E‖≺H then 895

H ⊆ (K ∗ E). But as E ∩ F‖≺H , H ⊆ F by B3. Hence H ⊆ (K ∗ E) ∩ F . 896

Appendix B: Representation Theorem for Ordered Abduction 897

DERIVED PROPOSITIONS 898

B0. Non-contradiction: If (E‖≈ H ) then (H �= Ø) 899

Trivial from B3′. 900

901

B14. Reflexive Weak Right Strengthening: If [(G ⊆ E)∧ (G �= Ø)] then [(E‖≈G)∨ 902

(E ∩ (−G)‖≈E)] 903

From B4 with E = H and B1. Moreover we can not have E‖≈G and 904

(E ∩ (−G))‖≈E ; otherwise by B8 we would have (E ∩ (−G)‖≈G which is 905

contradictory with B3′. 906

B2. Strong Left Or: If [(E‖≈F)∧ (G‖≈H )] then [((E ∪ G)‖≈ F)∨ 907

((E ∪ G‖≈ H )] 908

B14 with E ⊆ E ∪ G and G ⊆ E ∪ G proves that if neither E ∪ G‖≈ E nor 909

E ∪ G‖≈ G then [G ∩ (−E) ‖≈E ∪ G] and [E ∩ (−G) ‖≈E ∪ G]. Hence by B9 910

a contradiction with B3′. Then [E ∪ G‖≈E] or [E ∪ G‖≈G]. Hence B2 through 911

B8. 912
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B2′. Left Or: If [ (E‖≈F)∧ (G‖≈F)] then (E ∪ G)‖≈ F913

Trivial from B2.914

B26. If [E‖≈H )∧ (G ⊆ E)] then (H ∪ G)‖≈H915

From B1 H‖≈H hence by B2′E∪H‖≈H . Now [(E∪H‖≈ H )∧ (H ⊆ H ∪G)]916

and B6 give [(E ∪ H ) ∩ (H ∪ G)] ‖≈H . And (E ∪ H )∩ (H ∪ G) = H ∪ G if917

(G ⊆ E).918

B10. If [(E‖≈H )∧ (G ⊆ E)∧ ¬(E‖≈G)] then [E ∩ (−G)] ‖≈H919

From B14 and B8920

B7. Weak Cut: If [(E‖≈G)∧ (G ⊆ F)∧ (E ∩ F‖≈H )] then (E‖≈H )921

Assume that [(E‖≈G)∧ (E ∩ F ⊆ E) ∧ ¬(E‖≈E ∩ F)]. Then by B10922

[E ∩ (−E ∪ −F)] ‖≈G i.e. [E ∩ (−F)]‖≈G. This is contradictory with G ⊆ F923

by B3′. Hence [(E‖≈G)∧ (G ⊆ F)] gives E‖≈E ∩ F . Then by B8, [(E‖≈G)∧924

(G ⊆ F)∧ (E ∩ F‖≈H )] gives (E‖≈ H ).925

B3′′. If E‖≈H then E‖≈E ∩ H926

Assume that E‖≈E ∩ H is not the case. Then by B10 [E ∩ (−E ∩ H )]927

‖≈ H i.e. E ∩ (−H )‖≈H . Hence a contradiction by B3′.928

B67. If [(E‖≈H )∧ (G ⊆ E)∧ (H ∪ G)‖≈G] then E‖≈ G929

By B4 [(G ⊆ E)∧ (H ∪ G)‖≈G] gives ((H ∪ G) ∩ E)‖≈ G930

By B5 [(E‖≈H )∧ (H ⊆ (H ∪ G)) ∧ ((H ∪ G) ∩ E)‖≈ G] gives E‖≈G931

932

Now, we show the equivalence between two sets of postulates, the second con-933

taining less postulates than the first.934

THEOREM B.1. The set of postulates BOR = {B1, B3′, B4′, B5, B6, B8, B9}935

and B′
R = {B3′, B14, B5, B6, B8, B9} are equivalent.936

Proof. It suffices to prove that under the other postulates, B14 is equivalent to937

the conjunction of B1 and B4′.938

We have already proved that B14 follows from the conjunction of B1 and B4′.939

Conversely, assume B14. B1 follows immediately under B3′ if we set E = G.940

Let us show that B4′ follows equally. Assume that (E‖≈H )∧ (Ø �= G ⊆ H ). Now941

by B15, from (Ø �= G ⊆ H ), it follows that [(H‖≈G) ∨ (H ∩ (−G)‖≈H )]. If942

(H‖≈ G) then by B8, (E‖≈G).943

So, to complete the proof, it suffices to show that: if (E‖≈H )∧ (Ø �= G ⊆ H )∧944

(H ∩ (−G)‖≈H ) then E ∩ (−G)]‖≈E . In this case, we do not have H‖≈G (see945

the proof above).946

(a) If G ⊆ (−E), then E ∩ (−G) = E . Hence by B1, E ∩ (−G) )‖≈E947

(b) If G ⊆ E , then from B14 it follows that [(E‖≈G) ∨ (E ∩ (−G)‖≈E)]. Let948

us show that we have not E‖≈G. If we assume the opposite, then we have949

(E‖≈ G)∧ (G ⊆ H )∧ (G ⊆ E). Then G ⊆ E ∩ H . Then from B14, it follows950
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that either E ∩ H‖≈G or G∩(-( E ∩ H ))‖≈ (E ∩ H ). The latter case is 951

impossible since G ∩ (−(E ∩ H )) = Ø. So E ∩ H‖≈ G. Now by B14, from 952

E ∩ H ⊆ H it follows that either H‖≈E ∩ H or (H ∩ (−(E ∩ H ))‖≈H . The 953

latter case is impossible because H ∩ (−(E ∩ H )) = H ∩ (−(E)); so we 954

would have H ∩ (−(E))‖≈ H which is contradictory to E‖≈H under B9. 955

So H‖≈E ∩ H . Then by B8, H‖≈G in contradiction with the hypothesis. 956

So we have not E‖≈G. Hence, we have E ∩ (−G)‖≈E . 957

(c) In general G = G1 ∪ G2 with G1 ⊆ E and G2 ⊆ (−E). So E ∩ (−G) = E ∩ 958

(−G1). So it suffices to prove that the conditions respected by G are respected 959

by G1 and to use the proof b). The only point to show is that if (G1 ∪ G2 ⊆ H ) 960

and if we have not (H‖≈ G1 ∪ G2) then we do not have H‖≈G1. Or, what 961

is equivalent, if (G1 ∪ G2 ⊆ H ) and H‖≈G1 then H‖≈G1 ∪ G2. Now by 962

B1, H ∩ (G1 ∪ G2) = (G1 ∪ G2)‖≈G1 ∪ G2. Then from B7 (we can use it as 963

it follows from other postulates than B4′): if [(H‖≈G1) ∧ (G1 ⊆ G1 ∪ G2) ∧ 964

(H ∩ (G1 ∪ G2)‖≈(G1 ∪ G2)] then H )‖≈(G1 ∪ G2). 965

REPRESENTATION THEOREM 966

THEOREM B.2. Let * be a revision function satisfying AGM set of postulates 967

A = {A1, A2, A3, A4, A5}, then an inference relation ‖≈ defined according to 968

(E‖≈ H ) ≡ [(Ø �= K ∗ H ⊆ K ∗ E)] respects the set of postulates BoR = 969

{B1, B3′, B4′, B5, B6, B8, B9} and therefore is a reflexive abductive inference 970

relation. 971

Proof. 972

973

B1: Trivial 974

B3′: Let (E‖≈H ) then Ø �= K ∗ H ⊆ K ∗ E . Then by A2 K ∗ H ⊆ H and 975

K ∗ E ⊆ E . Hence K ∗ H ⊆ E ∩ H �= Ø. 976

B4′: Let (E‖≈H ) and (G ⊆ H ). 977

Assume first that G ∩ K ∗ H �= Ø. As G = (G ∩ H ), K ∗ G = K ∗ (G ∩ H ). 978

Hence by A4 and A5 K ∗ G = G ∩ K ∗ H ⊆ K ∗ H . Now K ∗ H ⊆ K ∗ E hence 979

K ∗ G ⊆ K ∗ E i.e. E‖≈G. 980

Assume now that G∩K ∗ H = Ø. Now K ∗ H ⊆ K ∗E ⊆ E and K ∗ H ⊆ H by 981

A2. So K ∗ E ∩ H �= Ø. Hence K ∗ H = K ∗ H ∩ E = K ∗ (E ∩ H ) = K ∗ E ∩ H . 982

Then G ∩ K ∗ H = Ø gives G ∩ K ∗ E ∩ H = Ø then G ∩ K ∗ E = Ø 983

i.e. K ∗ E ⊆ −G. Then K ∗ E ∩ (−G) = K ∗ E �= Ø. Then by A4 and A5, 984

K ∗ (E ∩ (−G)) = K ∗ E ∩ (−G) = K ∗ E . Hence E ∩ (−G)‖≺E . 985
986

B5: Let (E‖≈F)∧ (E‖≈H ) then [(K ∗ F ⊆ K ∗ E)∧ (K ∗ H ⊆ K ∗ E)]. A2, A4 987

and A5 gives A45 (Right Distributivity) then K ∗ (F ∪ H ) is equal to either K ∗ F 988

or K ∗ H or K ∗ F ∪ K ∗ H . Hence K ∗ (F ∪ H ) ⊆ K ∗ E . Hence [E‖≈ (F ∪ H )]. 989
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B6: Let [(E‖≈H )∧ (H ⊆ F)] then [(K ∗ H ⊆ K ∗ E)∧ (H ⊆ F)]. By A2,990

K ∗ H ⊆ H . Then K ∗ H ⊆ F . By A4 K ∗ H ⊆ K ∗ E ∩ F ⊆ K ∗ (E ∩ F).991

Hence (E ∩ F‖≈ H ).992

B8: Let [(E‖≈F)∧ (F‖≈G)] then K ∗ F ⊆ K ∗ E and K ∗ G ⊆ K ∗ F then993

K ∗ G ⊆ K ∗ E hence (E‖≈G).994

B9: Let [(E‖≈H )∧ (F‖≈H )] then K ∗ H ⊆ K ∗ E and K ∗ H ⊆ K ∗ F . By A2,995

K ∗ F ⊆ F then K ∗ H ⊆ K ∗ E ∩ F . Hence by A4, K ∗ H ⊆ K ∗ (E ∩ F) then996

[(E ∩ F)‖≈ H ].997

THEOREM B.3. Let ‖≈ be a reflexive inference relation satisfying the set of998

postulates BoR = {B1, B3′, B4′, B5, B6, B8, B9}. Then the operation * defined by999

K ∗ E = ∩H, H‖≈ E (intersection of all events from which E can be abduced) and1000

where we set K = K ∗ T , respects the set of postulates A = {A1, A2, A3, A4, A5}1001

and therefore is a revision function. Moreover, (E‖≈H ) ≡ [(Ø �= K ∗H ⊆ K ∗E)]1002

and K ∗ E = {w, E‖≈w}.1003

Proof.1004

(a) We show first that (E‖≈H ) ) ≡ (Ø �= K ∗ H ⊆ K ∗ E)1005

If sense: if (Ø �= K ∗ H ⊆ K ∗ E) then (E‖≈H )1006

Let (K ∗ H ⊆ K ∗ E) hence if (F‖≈E) then (K ∗ H ⊆ F). Then K ∗ H ⊆ E1007

because E‖≈E . Then by B15, E‖≈K ∗ H or E ∩ (−K ∗ H )‖≈E . But if1008

E ∩ (−K ∗ H )‖≈ E then K ∗ H ⊆ E ∩ (−K ∗ H ) which is impossible. Then1009

E‖≈K ∗ H . Now K ∗ H‖≈H by B9 so E‖≈H by B8.1010

Only if sense: If (E‖≈H ) then (Ø �= K ∗ H ⊆ K ∗ E)1011

K ∗ H = ∩G/G‖≈H and K ∗ E = ∩F /F‖≈E . Assume (E‖≈H ). By1012

B8, if (F‖≈E) then (F‖≈H ). Hence {F /F‖≈E }⊆ {G/G‖≈H}. Then1013

[∩G/G‖≈H ] ⊆ [∩F /F‖≈E] hence (K ∗ H ⊆ K ∗ E).1014

Now, by B9, [∩G/G‖≈H ] ‖≈H then by B3′, K ∗ H ∩ H �= Ø1015

(b) Let us show now that K ∗ E = {w; E‖≈w}.1016

Let w/E‖≈w then w⊆{∩H /H‖≈E}. Indeed, w⊆{∩H , H‖≈ E} is equivalent1017

to (if H‖≈E then w⊆ H ). Now H‖≈E and E‖≈w imply H‖≈w by B8. Then1018

H∩w�= Ø by B3′ hence w⊆ H .1019

Conversely, let w such as if H‖≈E then w⊆ H . Then w⊆ E because E‖≈E .1020

Assume E‖≈w is not the case. Then by B10, from [(E‖≈E)∧(w⊆ E) ∧1021

¬(E‖≈w)], one obtains (E ∩ (−w)‖≈E). Now [w⊆ (E ∩ (−w))] is not the1022

case and this is in contradiction with [if H‖≈E then w⊆ H ].1023

(c) We can now prove that the postulates are satisfied. Since by definition1024

K ∗ T = K , it is enough to show that {A1, A2, A4, A5} is respected, by1025

using the set of postulates equivalent to A.1026

A1. By B1, Ø �= E‖≈E . So there exists at least one H such as H‖≈ E . By B9,1027

[∩H /H‖≈E] ‖≈E i.e. K ∗ E‖≈E . By B3′, K ∗ E ∩ E �= Ø. The same reasoning1028

with E = T shows that K = K ∗ T is never empty.1029
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A2. By B1 Ø �=E‖≈E then [∩H /H‖≈E] ⊆ E. 1030

A4. We prove first the following corollary: If G ⊆ K ∗ E then K ∗ G = G 1031

It is enough to show that G ⊆ K ∗G (the other direction comes from B2). Let us 1032

show that if G∩(−K ∗G) �= Ø then G‖≈[G∩(−K ∗G)] which is contradictory as it 1033

means K ∗[G∩(−K ∗G)] ⊆ K ∗G when by A2 K ∗[G∩(−K ∗G)] ⊆ G∩(−K ∗G). 1034

By B15, Ø �= [G ∩ (−K ∗ G)] ⊆ E implies either E‖≈[G ∩ (−K ∗ G)] or 1035

E ∩ [−(G ∩ (−K ∗ G))]‖≈E . In this latter case, [E\(G ∩ (−K ∗ G))]‖≈E . Then, 1036

K ∗E ⊆ K ∗[E−(G∩(−K ∗G))] hence by A2, K ∗E ⊆ [E−(G∩(−K ∗G))] which 1037

is contradictory because [G ∩ (−K ∗ G)] ⊆ K ∗ E . Hence E‖≈[G ∩ (−K ∗ G)]. 1038

By B6, E‖≈[G ∩ (−K ∗ G)] and [G ∩ (−K ∗ G)] ⊆ G imply (E ∩ G)‖≈[G ∩ 1039

(−K ∗ G)] then G‖≈[G ∩ (−K ∗ G)]. As we have shown that it is contradictory, 1040

then G ∩ (−K ∗ G) = Ø. 1041

We prove now A4. 1042

B4 shows that If [(E‖≈H )∧ (H ⊆ F)] then (E ∩ F‖≈H ), hence if 1043

[(K ∗ H ⊆ K ∗ E) ∧ (H ⊆ F)] then K ∗ H ⊆ K ∗ (E ∩ F]. Let G ⊆ (K ∗ E) ∩ F . 1044

We have K ∗ G ⊆ G ⊆ K ∗ E and G ⊆ F . Then K ∗ G ⊆ K ∗ (E ∩ F). Now 1045

K ∗ G = G by the corollary. This shows that (K ∗ E) ∩ F ⊆ K ∗ (E ∩ F). 1046

A5. Assume that ((K ∗ E) ∩ F �= Ø) then (K ∗ (E ∩ F) ⊆ (K ∗ E) ∩ F). 1047

By B15, [(E ∩ F) ⊆ E) ∧ ((E ∩ F) �= Ø)] implies E‖≈(E ∩ F) or 1048

(E ∩ (−F))‖≈E . Then (K ∗ (E ∩ F) ⊆ K ∗ E or K ∗ E ⊆ K ∗ [E ∩ (−F)]. But by 1049

A2, K ∗ [E ∩ (−F)] ⊆ [E ∩ (−F)] which is contradictory with ((K ∗ E)∩ F �= Ø). 1050

Then (K ∗ (E ∩ F) ⊆ K ∗ E . And by A2, K ∗ (E ∩ F) ⊆ E ∩ F . 1051
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